408 research outputs found

    Plasma processes in pulsar environments

    Get PDF
    The aim of this thesis is to study coherent plasma effects and collective plasma processes in pulsar environments. Pulsars are one of the most enigmatic objects in the universe. Formed in supernova explosions, pulsars are rapidly rotating neutron stars identified by their periodically pulsed electromagnetic emission. The source of the radiation is believed to be associated with the electron-positron (pair) plasma populating the pulsar magnetosphere. The theory of pulsar radiation is still in its infancy and there is lack of understanding about the energetic processes involved. The initial aim of this thesis is to study a possible emission mechanism in which electrostatic oscillations are coupled to propagating electromagnetic waves by a magnetic field inhomogeneity, thus creating a source of radiation in the pulsar magnetosphere. The full nonlinear equations in cylindrical geometry for a streaming cold pair plasma are solved numerically, together with Maxwell's equations, using a Finite-Difference Time Domain method. Electrostatic oscillations are induced in a streaming plasma in the presence of a non-uniform magnetic field, and the resulting electromagnetic waves are modelled self-consistently. Also presented is the linear perturbation analysis of these model equations perturbed from a dynamical equilibrium in order to probe the fundamental modes present in the system. These simulations successfully exhibit the coupling mechanism and the nonlinear interaction between electromagnetic waves and independent plasma oscillations, confirming the importance of coherent plasma effects and collective plasma processes in the pulsar magnetosphere. The observed electromagnetic signature is characterised by the nature of the emission mechanism and possibly by the menagerie of dust it encounters as it propagates through the surrounding supernova remnant. Supernova remnants are composed of multi-species electron-ion dusty plasmas. Conventional modelling of dust growth in this environment is based upon coagulation and nucleation of gas phase material. The second aim of this thesis is to study a possible spheroidal dust growth mechanism via plasma deposition. Dust grains immersed in a plasma acquire a net negative charge forming a plasma sheath. Ions are accelerated from the bulk plasma into the sheath and are deposited on the surface of the grain altering its shape and size. Grains with an elliptical geometry have a non-radial electric field and further anisotropic growth occurs if the deposited ions are non-inertial. In reality the extent of such growth depends upon the initial kinetic energy of the ions and the magnitude of the electric field in the sheath. Laplace's equation for the electric field for a range grain eccentricities is numerically solved using a bespoke finite difference method, the dynamics of the ions in the sheath are solved, showing how elliptical growth is related to the initial eccentricity and size of the seed relative to the sheath length

    Jupiter as a Giant Cosmic Ray Detector

    Get PDF
    We explore the feasibility of using the atmosphere of Jupiter to detect Ultra-High-Energy Cosmic Rays (UHECR's). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray "detector" area of 3.3×1073.3 \times 10^7 km2^2. We predict that Fermi-LAT should be able to detect events of energy >1021>10^{21} eV with fluence 10−710^{-7} erg cm−2^{-2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳1020\gtrsim 10^{20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by ALMA. Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.Comment: 8 pages, 5 figures. Accepted for publication in the Astrophysical Journal Letter

    Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    Get PDF
    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium

    Dynamic pathfinding for a swarm intelligence based UAV control model using particle swarm optimisation

    Get PDF
    In recent years unmanned aerial vehicles (UAVs) have become smaller, cheaper, and more efficient, enabling the use of multiple autonomous drones where previously a single, human-operated drone would have been used. This likely includes crisis response and search and rescue missions. These systems will need a method of navigating unknown and dynamic environments. Typically, this would require an incremental heuristic search algorithm, however, these algorithms become increasingly computationally and memory intensive as the environment size increases. This paper used two different Swarm Intelligence (SI) algorithms: Particle Swarm Optimisation and Reynolds flocking to propose an overall system for controlling and navigating groups of autonomous drones through unknown and dynamic environments. This paper proposes Particle Swarm Optimisation Pathfinding (PSOP): a dynamic, cooperative algorithm; and, Drone Flock Control (DFC): a modular model for controlling systems of agents, in 3D environments, such that collisions are minimised. Using the Unity game engine, a realtime application, simulation environment, and data collection apparatus were developed and the performances of DFC-controlled drones—navigating with either the PSOP algorithm or a D* Lite implementation—were compared. The simulations do not consider UAV dynamics. The drones were tasked with navigating to a given target position in environments of varying size and quantitative data on pathfinding performance, computational and memory performance, and usability were collected. Using this data, the advantages of PSO-based pathfinding were demonstrated. PSOP was shown to be more memory efficient, more successful in the creation of high quality, accurate paths, more usable and as computationally efficient as a typical incremental heuristic search algorithm when used as part of a SI-based drone control model. This study demonstrated the capabilities of SI approaches as a means of controlling multi-agent UAV systems in a simple simulation environment. Future research may look to apply the DFC model, with the PSOP algorithm, to more advanced simulations which considered environment factors like atmospheric pressure and turbulence, or to real-world UAVs in a controlled environment

    Evaluating the stability of numerical schemes for fluid solvers in game technology

    Get PDF
    A variety of numerical techniques have been explored to solve the shallow water equations in real-time water simulations for computer graphics applications. However, determining the stability of a numerical algorithm is a complex and involved task when a coupled set of nonlinear partial differential equations need to be solved. This paper proposes a novel and simple technique to compare the relative empirical stability of finite difference (or any grid-based scheme) algorithms by solving the inviscid Burgers’ equation to analyse their respective breaking times. To exemplify the method to evaluate numerical stability, a range of finite difference schemes is considered. The technique is effective at evaluating the relative stability of the considered schemes and demonstrates that the conservative schemes have superior stability

    Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Get PDF
    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots

    A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs

    Get PDF
    We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC 150649.97+702736.0, and WISEPA J174124.26+255319.5.We have placed robust 3s upper limits on the flux density in the 111 – 169 MHz frequency range for these targets: WISE 1506: < 0:72 mJy; WISE 1741: < 0:87 mJy; SIMP 0136: < 0:66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources

    Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae

    Full text link
    © 2017 Barratt et al. The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais; a significant albeit neglected tropical disease. Leishmaniasis has afflicted humans for millennia, but how ancient is Leishmania and where did it arise? These questions have been hotly debated for decades and several theories have been proposed. One theory suggests Leishmania originated in the Palearctic, and dispersed to the New World via the Bering land bridge. Others propose that Leishmania evolved in the Neotropics. The Multiple Origins theory suggests that separation of certain Old World and New World species occurred due to the opening of the Atlantic Ocean. Some suggest that the ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia evolved on Gondwana between 90 and 140 million years ago. In the present study a detailed molecular and morphological characterisation was performed on a novel Australian trypanosomatid following its isolation in Australia’s tropics from the native black fly, Simulium (Morops) dycei Colbo, 1976. Phylogenetic analyses were conducted and confirmed this parasite as a sibling to Zelonia costaricensis, a close relative of Leishmania previously isolated from a reduviid bug in Costa Rica. Consequently, this parasite was assigned the name Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis diverged when Australia and South America became completely separated, their divergence occurred between 36 and 41 million years ago at least. Using this vicariance event as a calibration point for a phylogenetic time tree, the common ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia appeared in Gondwana approximately 91 million years ago. Ultimately, this study contributes to our understanding of trypanosomatid diversity, and of Leishmania origins by providing support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae

    Use of Rollover Protective Structures -- Iowa, Kentucky, New York, and Ohio, 1992-1997

    Get PDF
    Agriculture has one of the highest occupational fatality rates of all industries in the United States (1). Tractors and other types of agricultural equipment account for a large proportion of these fatalities, and farm-tractor rollovers account for approximately 130 work-related deaths each year in the United States (2). Although rollover protective structures (ROPS) are effective in protecting tractor operators from fatal injuries during rollovers (3-5), most tractors in the United States are not equipped with ROPS (4-7). Beginning in 1985, tractor manufacturers in the United Sates agreed to sell only tractors with ROPS; however, many older tractors without ROPS remain in use. To determine the prevalence of the use of ROPS, beginning in 1992, the Farm Family Health and Hazard Surveillance (FFHHS) program * collected state-based data on tractor age and use of ROPS from selected states. As of August 1997, four states had completed collection and analysis of data on farm tractors. This report summarizes the results of that survey, which indicates that 80%-90% of tractors in use in the four states were manufactured before 1985 and that less than 40% are equipped with ROPS
    • …
    corecore